Alex Luedtke

Publications | Alex Luedtke | Statistical Theory and Scientific Collaborations

Full list on Google Scholar.

student or postdoc author

Statistical theory and methodology

Preprints

DoubleGen: Debiased generative modeling of counterfactuals.
A. Luedtke, K. Fukumizu. arXiv, 2025.
[preprint][code]
Coreset selection for the Sinkhorn divergence and generic smooth divergences.
A. Kokot, A. Luedtke. arXiv, 2025.
[preprint][code]
Automatic debiased machine learning for smooth functionals of nonparametric M-estimands.
L. van der Laan, A. Bibaut, N. Kallus, A. Luedtke. arXiv, 2025.
[preprint]
Combining T-learning and DR-learning: a framework for oracle-efficient estimation of causal contrasts.
L. van der Laan, M. Carone, A. Luedtke. arXiv, 2024.
[preprint][code]
Propensity score augmentation in matching-based estimation of causal effects.
E. Ulloa-Perez, M. Carone, A. Luedtke. arXiv, 2024.
[preprint]
Doubly robust inference via calibration.
L. van der Laan, A. Luedtke, M. Carone. arXiv, 2024.
[preprint][code]
Adaptive debiased machine learning using data-driven model selection techniques.
L. van der Laan, A. Luedtke, M. Carone. arXiv, 2023.
[preprint]

2025

Simplifying debiased inference via automatic differentiation and probabilistic programming.
A. Luedtke. Journal of the Royal Statistical Society, Series B.
[paper][preprint][code]
Data fusion using weakly aligned sources.
S. Li, P. B. Gilbert, A. Luedtke. Journal of the American Statistical Association.
[paper][preprint]
Stochastic gradients under nuisances.
F. Yu, R. Mehta, A. Luedtke, Z. Harchaoui. Neural Information Processing Systems (NeurIPS) (in press).
[preprint][code]
Stabilized inverse probability weighting via isotonic calibration.
L. van der Laan, Z. Lin, M. Carone, A. Luedtke. Causal Learning and Reasoning, Proceedings of Machine Learning Research.
[preprint]
Estimation of subsidiary performance metrics under optimal policies.
Z. Li, H. Nassif, A. Luedtke. Statistica Sinica (in press).
[paper][preprint][code]

2024

One-step estimation of differentiable Hilbert-valued parameters.
A. Luedtke, I. Chung. Annals of Statistics.
[paper][preprint][code]
Can the potential benefit of individualizing treatment be assessed using trial summary statistics alone?
N. Galanter, M. Carone, R. C. Kessler, A. Luedtke. American Journal of Epidemiology.
[paper][preprint]
Inference for treatment-specific survival curves using machine learning.
T. Westling, A. Luedtke, P. Gilbert, M. Carone. Journal of the American Statistical Association.
[paper][preprint][code]
Adversarial Monte Carlo meta-learning of conditional average treatment efects.
A. Luedtke, I. Chung. Handbook of Statistical Methods for Precision Medicine, (Chapter 11).
[chapter]

2023

Causal isotonic calibration for heterogeneous treatment effects.
L. van der Laan, E. Ulloa-Pérez, M. Carone, A. Luedtke. International Conference on Machine Learning (ICML).
[paper][preprint][code]
Efficient estimation of the maximal association between multiple predictors and a survival outcome.
T. J. Huang, A. Luedtke, I. McKeague. Annals of Statistics.
[paper][preprint]
Efficient estimation under data fusion.
S. Li, A. Luedtke. Biometrika.
[paper][preprint]
Estimating the efficiency gain of covariate-adjusted analyses in future clinical trials using external data.
X. Li, S. Li, A. Luedtke. Journal of the Royal Statistical Society, Series B.
[paper][preprint]
Adversarial meta-learning of Gamma-minimax estimators that leverage prior knowledge.
H. Qiu, A. Luedtke. Electronic Journal of Statistics.
[paper][preprint][code]
Marginal Bayesian posterior inference using recurrent neural networks with application to sequential models.
T. Fisher, A. Luedtke, M. Carone, N. Simon. Statistica Sinica.
[paper]

2022

Individualized treatment rules under stochastic treatment cost constraints.
H. Qiu, M. Carone, A. Luedtke. Journal of Causal Inference.
[paper][preprint]
Improved efficiency for cross-arm comparisons via platform designs.
T. J. Huang, A. Luedtke, The AMP Investigator Group. Biostatistics.
[paper][preprint]
Improved inference for vaccine-induced immune responses via shape-constrained methods.
N. Laha, Z. Moodie, Y. Huang, A. Luedtke. Electronic Journal of Statistics.
[paper][preprint]
A general adaptive framework for multivariate point null testing.
A. Elder, M. Carone, P. Gilbert, A. Luedtke. arXiv.
[tech rep]

2021

Adversarial Monte Carlo meta-learning of optimal prediction procedures.
A. Luedtke, I. Chung, O. Sofrygin. Journal of Machine Learning Research.
[paper][code]
Optimal individualized decision rules using instrumental variable methods.
H. Qiu, M. Carone, E. Sadikova, M. Petukhova, R. C. Kessler, A. Luedtke. Journal of the American Statistical Association.
[paper][discussions: 1, 2][rejoinder]
Universal sieve-based strategies for efficient estimation using machine learning tools.
H. Qiu, A. Luedtke, M. Carone. Bernoulli.
[paper][preprint]
Improving precision and power in randomized trials for Covid-19 treatments using covariate adjustment, for ordinal or time to event outcomes.
D. Benkeser, I. Díaz, A. Luedtke, J. Segal, D. Scharfstein, M. Rosenblum. Biometrics.
[paper][discussions: 1, 2, 3][rejoinder]
Discussion of Kallus (2020) and Mo, Qi, and Liu (2020): new objectives for policy learning.
S. Li, X. Li, A. Luedtke. Journal of the American Statistical Association.
[paper][preprint]

2020

Deep adversarial learning of optimal statistical procedures.
A. Luedtke, M. Carone, N. Simon, O. Sofrygin. Science Advances.
[paper][code]
Performance guarantees for policy learning.
A. Luedtke, A. Chambaz. Annales de l'Institut Henri Poincaré.
[paper][preprint]
Efficient principally stratified treatment effect estimation in crossover studies with absorbent binary endpoints.
A. Luedtke, J. Wu. Journal de la Société Française de Statistique.
[paper][preprint]
Assessing the incremental value of new biomarkers based on OR rules.
L. Wang, A. Luedtke, Y. Huang. Biostatistics.
[paper][preprint]

2019

An omnibus test of equality in distribution for unknown functions.
A. Luedtke, M. Carone, M. J. van der Laan. Journal of the Royal Statistical Society, Series B.
[paper][preprint]
Asymptotically optimal algorithms for budgeted multiple play bandits.
A. Luedtke, E. Kaufmann, A. Chambaz. Machine Learning.
[paper][preprint]
Selecting optimal subgroups for treatment using many covariates.
T. J. VanderWeele, A. Luedtke, M. J. van der Laan, R. C. Kessler. Epidemiology.
[paper][preprint]
Comment on 'Entropy learning for dynamic treatment regimes' by Binyan Jiang, Rui Song, et al.
H. Qiu, A. Luedtke, M. J. van der Laan. Statistica Sinica.

2018 and earlier

Parametric-rate inference for one-sided differentiable parameters.
A. Luedtke, M. J. van der Laan. Journal of the American Statistical Association, 2018.
[paper][preprint]
Toward computerized efficient estimation in infinite-dimensional models.
M. Carone, A. Luedtke, M. J. van der Laan. Journal of the American Statistical Association, 2018.
[paper][preprint]
Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy.
A. Luedtke, M. J. van der Laan. Annals of Statistics, 2016.
[paper][preprint]
CV-TMLE for nonpathwise differentiable target parameters.
M. J. van der Laan, A. Bibaut, A. Luedtke. Targeted Learning in Data Science, (Chapter 25), 2018.
[chapter]
Sensitivity analysis.
I. Díaz, A. Luedtke, M. J. van der Laan. Targeted Learning in Data Science, (Chapter 27), 2018.
[chapter][preprint]
Evaluating the impact of treating the optimal subgroup.
A. Luedtke, M. J. van der Laan. Statistical Methods in Medical Research, 2017.
[paper][preprint]
Sequential double robustness in right-censored longitudinal models.
A. Luedtke, O. Sofrygin, M. J. van der Laan, M. Carone. arXiv, 2017.
[tech rep]
Optimal individualized treatments in resource-limited settings.
A. Luedtke, M. J. van der Laan. International Journal of Biostatistics, 2016.
[paper][preprint]
Comment on 'Personalized dose finding using outcome weighted learning'.
A. Luedtke, M. J. van der Laan. Journal of the American Statistical Association, 2016.
[paper]
Super-learning of an optimal dynamic treatment rule.
A. Luedtke, M. J. van der Laan. International Journal of Biostatistics, 2016.
[paper][preprint]
Discussion of 'Deductive derivation and Turing-computerization of semiparametric efficient estimation'.
A. Luedtke, M. Carone, M. J. van der Laan. Biometrics, 2015.
[paper][pdf]
Targeted learning of the mean outcome under an optimal dynamic treatment rule.
M. J. van der Laan, A. Luedtke. Journal of Causal Inference, 2015.
[paper][preprint]

Selected scientific collaborations

Mosaic HIV-1 vaccine regimen in southern African women: a randomised, double-blind, placebo-controlled, phase 2b trial.
G. E. Gray, K. Mnagadi, et al. Lancet Infectious Diseases, 2024.
[paper]
New directions in research on heterogeneity of treatment effects for major depression.
A. Luedtke, R. C. Kessler. JAMA Psychiatry, 2021.
[paper]
Effect of dengue serostatus on dengue vaccine safety and efficacy.
S. Sridhar, A. Luedtke, E. Langevin, M. Zhu, M. Bonaparte, et al. New England Journal of Medicine, 2018.
[paper]
Modifiers of Covid-19 vaccine efficacy - results from four Covid-19 Prevention Network efficacy trials.
C. B. Turley, L. Tables, T. Fuller, … , A. Luedtke. Vaccine, 2023.
[paper]
Immune correlates analysis of the ENSEMBLE single Ad26.COV2.S dose vaccine efficacy clinical trial.
Y. Fong, A. B. McDermott, et al. Nature Microbiology, 2023.
[paper]
Pragmatic precision psychiatry — a new direction for optimizing treatment selection.
R. C. Kessler, A. Luedtke. JAMA Psychiatry, 2021.
[paper]
Clinical endpoints for evaluating efficacy in COVID-19 vaccine trials.
D. V. Mehotra, H. E. Janes, et al. Annals of Internal Medicine, 2021.
[paper]
A deferred-vaccination design to assess durability of COVID-19 vaccine effect after the placebo group is vaccinated.
D. Follmann, J. Fintzi, et al. Annals of Internal Medicine, 2021.
[paper]
Development and validation of a machine learning individualized treatment rule in first-episode schizophrenia.
C. S. Wu, A. Luedtke, E. Sadikova, H. J. Tsai, S. C. Liao, et al. JAMA Network Open, 2020.
[paper]
Suicide prediction models - a critical review of recent research with recommendations for the way forward.
R. C. Kessler, R. M. Bossarte, A. Luedtke, A. M. Zaslavsky, J. R. Zubizarreta. Molecular Psychiatry, 2019.
[paper]
Sample size requirements for multivariate models to predict between-patient differences in best treatments of major depressive disorder.
A. Luedtke, E. Sadikova, R. C. Kessler. Clinical Psychological Science, 2019.
[paper]
Statistical learning methods to determine immune correlates of herpes zoster in vaccine efficacy trials.
P. B. Gilbert, A. Luedtke. Journal of Infectious Diseases, 2018.
[paper]
Targeted estimation of the relationship between childhood adversity and fluid intelligence in a US population sample of adolescents.
J. M. Platt, K. A. McLaughlin, A. Luedtke, J. Ahern, A. Kaufman, K. M. Keyes. American Journal of Epidemiology, 2018.
[paper]
Racial/Ethnic differences in the role of childhood adversities for mental disorders among a nationally representative sample of adolescents.
J. Ahern, D. Karasek, A. Luedtke, T. A. Bruckner, M. J. van der Laan. Epidemiology, 2016.
[paper]